Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Virol Sin ; 38(2): 244-256, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2288504

ABSTRACT

Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.


Subject(s)
COVID-19 , Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Cats , Dogs , Rabies virus/genetics , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunity, Cellular , Spike Glycoprotein, Coronavirus
2.
Microbiol Spectr ; 11(1): e0296622, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193562

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially identified in 2019, after which it spread rapidly throughout the world. With the progression of the epidemic, new variants of SARS-CoV-2 with faster transmission speeds and higher infectivity have constantly emerged. The proportions of people asymptomatically infected or reinfected after vaccination have increased correspondingly, making the prevention and control of COVID-19 extremely difficult. There is therefore an urgent need for rapid, convenient, and inexpensive detection methods. In this paper, we established a nucleic acid visualization assay targeting the SARS-CoV-2 nucleoprotein (N) gene by combining reverse transcription-recombinase polymerase amplification with closed vertical flow visualization strip (RT-RPA-VF). This method had high sensitivity, comparable to that of reverse transcription-quantitative PCR (RT-qPCR), and the concordance between RT-RPA-VF and RT-qPCR methods was 100%. This detection method is highly specific and is not compatible with bat coronavirus HKU4, human coronaviruses 229E, OC43, and HKU1-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), or other respiratory pathogens. However, multiple SARS-CoV-2 variants are detectable within 25 min at 42°C using this visual method, including RNA transcripts of the Wuhan-Hu-1 strain at levels as low as 1 copy/µL, the Delta strain at 1 copy/µL, and the Omicron strain at 0.77 copies/µL. The RT-RPA-VF method is a simple operation for the rapid diagnosis of COVID-19 that is safe and free from aerosol contamination and could be an affordable and attractive choice for governments seeking to promote their emergency preparedness and better their responses to the continuing COVID-19 epidemic. In addition, this method also has great potential for early monitoring and warning of the epidemic situation at on-site-nursing points. IMPORTANCE The global COVID-19 epidemic, ongoing since the initial outbreak in 2019, has caused panic and huge economic losses worldwide. Due to the continuous emergence of new variants, COVID-19 has been responsible for a higher proportion of asymptomatic patients than the previously identified SARS and MERS, which makes early diagnosis and prevention more difficult. In this manuscript, we describe a rapid, sensitive, and specific detection tool, RT-RPA-VF. This tool provides a new alternative for the detection of SARS-CoV-2 variants in a range as low as 1 to 0.77 copies/µL RNA transcripts. RT-RPA-VF has great potential to ease the pressure of medical diagnosis and the accurate identification of patients with suspected COVID-19 at point-of-care.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcription , RNA, Viral/genetics , Recombinases/genetics , Sensitivity and Specificity
3.
Front Microbiol ; 13: 932698, 2022.
Article in English | MEDLINE | ID: covidwho-2032808

ABSTRACT

SARS-CoV-2 is a novel coronavirus that has caused a global pandemic. To date, 504,907,616 people have been infected and developed coronavirus disease 2019 (COVID-19). A rapid and simple diagnostic method is needed to control this pandemic. In this study, a visual nucleic acid detection method combining reverse transcription loop-mediated isothermal amplification and a vertical flow visualization strip (RT-LAMP-VF) was successfully established and could detect 20 copies/µl of SARS-CoV-2 RNA transcript within 50 min at 61°C. This assay had no cross-reactivity with a variety of coronaviruses, including human coronavirus OC43, 229E, HKU1, NL63, severe acute respiratory syndrome-related coronavirus (SARSr-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and bat coronavirus HKU4, exhibiting very high levels of diagnostic sensitivity and specificity. Most strikingly, this method can be used for detecting multiple SARS-CoV-2 variants, including the Wuhan-Hu-1 strain, Delta, and Omicron variants. Compared with the RT-qPCR method recommended by the World Health Organization (WHO), RT-LAMP-VF does not require special equipment and is easy to perform. As a result, it is more suitable for rapid screening of suspected SARS-CoV-2 samples in the field and local laboratories.

4.
PLoS Negl Trop Dis ; 15(3): e0009227, 2021 03.
Article in English | MEDLINE | ID: covidwho-1110082

ABSTRACT

Since its first emergence in 2012, cases of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) have continued to occur. At the end of January 2020, 2519 laboratory confirmed cases with a case-fatality rate of 34.3% have been reported. Approximately 84% of human cases have been reported in the tropical region of Saudi Arabia. The emergence of MERS-CoV has highlighted need for a rapid and accurate assay to triage patients with a suspected infection in a timely manner because of the lack of an approved vaccine or an effective treatment for MERS-CoV to prevent and control potential outbreaks. In this study, we present two rapid and visual nucleic acid assays that target the MERS-CoV UpE and N genes as a panel that combines reverse transcription recombinase polymerase amplification with a closed vertical flow visualization strip (RT-RPA-VF). This test panel was designed to improve the diagnostic accuracy through dual-target screening after referencing laboratory testing guidance for MERS-CoV. The limit of detection was 1.2×101 copies/µl viral RNA for the UpE assay and 1.2 copies/µl viral RNA for the N assay, with almost consistent with the sensitivity of the RT-qPCR assays. The two assays exhibited no cross-reactivity with multiple CoVs, including the bat severe acute respiratory syndrome related coronavirus (SARSr-CoV), the bat coronavirus HKU4, and the human coronaviruses 229E, OC43, HKU1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, the panel does not require sophisticated equipment and provides rapid detection within 30 min. This panel displays good sensitivity and specificity and may be useful to rapidly detect MERS-CoV early during an outbreak and for disease surveillance.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Diagnostic Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , Saudi Arabia/epidemiology , Sensitivity and Specificity , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL